Small-molecule activation of the TRAIL receptor DR5 in human cancer cells.
نویسندگان
چکیده
Tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL) activates apoptosis through the death receptors DR4 and DR5. Because of its superior safety profile and high tumor specificity compared to other TNF family members, recombinant soluble TRAIL and agonistic antibodies against its receptors are actively being developed for clinical cancer therapy. Here, we describe the identification and characterization of the small molecules that directly target DR5 to initiate apoptosis in human cancer cells. The activity was initially discovered through a high-throughput chemical screen for compounds that promote cell death in synergy with a small-molecule mimetic of Smac, the antagonist for inhibitor of apoptosis protein. Structure-activity relationship studies yielded a more potent analog called bioymifi, which can act as a single agent to induce DR5 clustering and aggregation, leading to apoptosis. Thus, this study identified potential lead compounds for the development of small-molecule TRAIL mimics targeting DR5 for cancer therapy.
منابع مشابه
Tunicamycin enhances tumor necrosis factor-related apoptosis-inducing ligand-induced apoptosis in human prostate cancer cells.
Death receptor 5 (DR5/TRAIL-R2) is an apoptosis-inducing membrane receptor for tumor necrosis factor-related apoptosis-inducing ligand (TRAIL/Apo2L). In this study, we showed that tunicamycin, a naturally occurring antibiotic, is a potent enhancer of TRAIL-induced apoptosis through up-regulation of DR5 expression. Tunicamycin significantly sensitized PC-3, androgen-independent human prostate ca...
متن کاملSmall Molecular TRAIL Inducer ONC201 Induces Death in Lung Cancer Cells: A Preclinical Study
Tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL) selectively targets cancer cells. The present preclinical study investigated the anti-cancer efficiency of ONC201, a first-in-class small molecule TRAIL inducer, in lung cancer cells. We showed that ONC201 was cytotoxic and anti-proliferative in both established (A549 and H460 lines) and primary human lung cancer cells. It wa...
متن کامل15-Deoxy-#-prostaglandin J2 induces death receptor 5 expression through mRNA stabilization independently of PPAR; and potentiates TRAIL-induced apoptosis
15-Deoxy-#-prostaglandin J2 (15d-PGJ2), the terminal derivative of the PGJ series, is emerging as a potent antineoplastic agent among cyclopentenone prostaglandins derivatives and also known as the endogenous ligand of peroxisome proliferator-activated receptor ; (PPAR;). On the other hand, death receptor 5 (DR5) is a specific receptor for tumor necrosis factor–related apoptosisinducing ligand ...
متن کاملThe farnesyltransferase inhibitor R115777 up-regulates the expression of death receptor 5 and enhances TRAIL-induced apoptosis in human lung cancer cells.
Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) preferentially induces apoptosis in transformed or malignant cells, thus exhibiting potential as a tumor-selective apoptosis-inducing cytokine for cancer treatment. Many studies have shown that the apoptosis-inducing activity of TRAIL can be enhanced by various cancer therapeutic agents. R115777 (tipifarnib) is the first farnesyltr...
متن کاملTanshinone IIA induces TRAIL sensitization of human lung cancer cells through selective ER stress induction.
Although tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) is a promised anticancer medicine targeting only the tumor, most cancers show resistance to TRAIL-induced apoptosis. For this reason, new therapeutic strategies to overcome the TRAIL resistance are required for more effective tumor treatment. In the present study, potential of tanshinone IIA as a TRAIL sensitizer was evalu...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Nature chemical biology
دوره 9 2 شماره
صفحات -
تاریخ انتشار 2013